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The propagation of light can be viewed as a process of continual fractional Fourier
transformation. As light propagates, its amplitude distribution evolves through fractional
transforms of increasing order.

Namias introduced the fractional-order Fourier transform [1] and McBride and Kerr
provided mathematical rigor and the definition for the operator for all orders, α ∈ R [2].
Pellat-Finet related the two-dimensional fractional Fourier transform to Fresnel diffraction,
connecting the composition of the operator with the Huygens principle [3]. Ozaktas and
Mendlovic explored the relationshp between wave amplitudes on spherical surfaces of cer-
tain radii and separation, as well as the description of general optical systems consisting
of sequences of lenses and free-space segments [4]. More recently, Schnebelin and Guillet
de Chatellus used the fractional Fourier transform to describe the integer and fractional
Talbot effects and their application to analog signal processing [5].

Almeida interpreted the order α as the angle of rotation in the time–frequency plane,
and made connections to the Wigner distribution and the ambiguity function [6].

1. Derivation of the Huygens–Fresnel principle

This derivation follows §3.4–3.7 and §4.1.2–4.5 of Goodman [7]. Let S1 be the planar
surface just behind the diffracting aperture and let S2 be the spherical surface of radius R
centered at P0 that joins and closes S = S1 + S2. The vector r01 points from P0 to P1,
where the latter is on S1.

U(P0) =
1

4π

∫∫
S1+S2

(
G
∂U

∂n
− U ∂G

∂n

)
ds (1)

where G = exp(jkr01)/r01. On S2, G = exp(jkR)/R. Also, given that

∂G(P1)

∂n
= cos( n̂, r01)

(
jk − 1

r01

)
exp(jkr01)

r01
= cos( n̂, r01)

(
jk − 1

r01

)
G(P1), (2)

then
∂G

∂n
=

(
jk − 1

R

)
G ≈ jkG, (3)

where the approximation is valid for large R. The S2 portion of the integral can be written∫∫
S2

(
G
∂U

∂n
− U(jkG)

)
ds =

∫
Ω
G

(
∂U

∂n
− jkU

)
R2 dω, (4)
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where Ω is the solid angle subtended by S2 at P0. The magnitude of RG, |RG| =
| exp(jkR)|, is uniformly bounded on S2. Thus this integral over S2 will vanish as R
becomes large as long as

lim
R→∞

R

(
∂U

∂n
− jkU

)
= 0, (5)

which is the Sommerfeld radiation condition. This is satisfied if U vanishes as fast as a
diverging spherical wave, which is the case if there are only outgoing waves impinging on
S2. Thus,

1

4π

∫∫
S2

(
G
∂U

∂n
− U ∂G

∂n

)
ds = 0 (6)

and therefore

U(P0) =
1

4π

∫∫
S1

(
G
∂U

∂n
− U ∂G

∂n

)
ds. (7)

We assume the diffracting screen is opaque except for the aperture, Σ.
Now apply the Kirchhoff boundary conditions:1

(1) Across the surface Σ, the field distribution U and its derivative ∂U/∂n are exactly
the same as they would be in the absence of the screen. This condition allows us
to specify the disturbance incident on the aperture by neglecting the presence of
the screen.

(2) Over the portion of S1 that lies in the geometrical shadow of the screen, the field
distribution U and its derivative ∂U/∂n are identically zero. This condition allows
us to neglect all of the surface of integration except that portion lying directly
within the aperture itself.

We now have

U(P0) =
1

4π

∫∫
Σ

(
G
∂U

∂n
− U ∂G

∂n

)
ds. (8)

Suppose either G or ∂G/∂n vanishes on S1. Let the Green’s function is written in terms

of P0 and its mirror image P̃0 (where r̃01 is the distance between P̃0 and P1), where the
sources at these two points are π rad out of phase:

G−(P1) =
exp(jkr01)

r01
− exp(jkr̃01)

r̃01
. (9)

In this case, G− vanishes on S1. We then have the first Rayleigh–Sommerfeld solution:

U(P0) = − 1

4π

∫∫
Σ
U
∂G−
∂n

ds. (10)

1While the Kirchhoff boundary conditions simplify the results considerably, it is important to realize
that neither can be exactly true. The presence of the screen will inevitably perturb the fields on Σ to
some degree, for along the rim of the aperture certain boundary conditions must be met that would not be
required in the absence of the screen. In addition, the shadow behind the screen is never perfect, for fields
will inevitably extend behind the screen for a distance of several wavelengths. However, if the dimensions
of the aperture are large compared with a wavelength, these fringing effects can be safely neglected, and
the two boundary conditions can be used to yield results that agree very well with experiment.
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The normal derivative of G− is

∂G−(P1)

∂n
= cos( n̂, r01)

(
jk − 1

r01

)
exp(jkr01)

r01
− cos( n̂, r̃01)

(
jk − 1

r̃01

)
exp(jkr̃01)

r̃01
. (11)

For P1 on S1, r01 = r̃01 and cos( n̂, r01) = − cos( n̂, r̃01), so on S1,

∂G−(P1)

∂n
= 2 cos( n̂, r01)

(
jk − 1

r01

)
exp(jkr01)

r01
. (12)

When r01 � λ,

∂G−(P1)

∂n
= 2jk cos( n̂, r01)

exp(jkr01)

r01
. (13)

Substituting this into the first Rayleigh–Sommerfeld solution, we have the Huygens–Fresnel
principle:

U(P0) =
1

jλ

∫∫
Σ
U(P1)

exp(jkr01)

r01
cos( n̂, r01) ds. (14)

This integral expresses the observed field U(P0) as a superposition of diverging spherical
waves exp(jkr01)/r01 originating from secondary sources located at each and every point
P1 within the aperture.

We can express the obliquity factor exactly as cos( n̂, r01) = ∆z/r01, and represent
P0 with the transverse coordinates u = (u, v) and P1 with the transverse coordinates
u0 = (u0, v0). Then

U(u, z) =
∆z

jλ

∫∫
Σ
U(u0, z0)

exp(jkr01)

r2
01

du0, (15)

where r01 =
√

(∆z)2 + ‖∆u‖2.

2. The Fresnel approximation

The Fresnel approximation is made via application of the binomial expansion (
√

1 + b ≈
1 + b/2− b2/8 + · · · ):

r01 = ∆z

√
1 +
‖∆u‖2
(∆z)2

≈ ∆z

(
1 +
‖∆u‖2

2(∆z)2

)
= ∆z +

‖∆u‖2

2∆z
. (16)

Only the first term is required for the approximation of the r2
01 that appears in the de-

nominator, but both terms are required for the approximation of r01 that appears in the
exponent. This is because errors in the approximation of r01 in the exponent are multiplied
by a very large number k (k ∼ 107 for optical wavelengths), and small phase changes are
very significant. Hence

U(u, z) =
ejk∆z

jλ∆z

∫∫
Σ
U0(u0, z0) exp

(
jk
‖∆u‖2

2∆z

)
du0. (17)
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3. Two-dimensional fractional Fourier transform

The two-dimensional fractional Fourier transform is

Fα{f}(x) =
ej(πα̂−2α)/2

2π| sinα|
exp

(
− j

2
cotα‖x‖2

)∫∫
exp

(
j
x · x′

sinα
− j

2
cotα‖x′‖2

)
f(x′) dx′,

(18)
where the integrals are infinite, 0 < |α| < π, and α̂ = sgn(sinα) [3, 2].

4. Fresnel diffraction as a fractional Fourier transform

To show that the Fresnel diffraction integral (Eq. 17) involves a fractional Fourier trans-
form, some scaling is necessary. Let ` be a characteristic length such that ‖u0‖ = `‖x′‖.
Equating the corresponding exponents in Eqs. 17 and 18,

k

∆z
‖u0‖2 = cotα‖x′‖2 (19)

‖u0‖2 =
∆z

k
cotα‖x′‖2 (20)

` =
√

(∆z/k) cotα. (21)

Similarly,

k

∆z
u · u0 =

x · x′

sinα
(22)

=
x · u0

sinα

‖x′‖
‖u0‖

(23)

k

∆z
‖u‖ =

‖x‖
sinα

1

`
(24)

‖u‖ =
∆z

k

√
k tanα

∆z sin2 α
‖x‖ (25)

=
√

(∆z/k) cotα cosα‖x‖ (26)

‖u‖ = ` cosα‖x‖. (27)

Note that du0 = du0 dv0, so du0 = (∆z/k) cotα dx′. Let Ũ0(x′, z) = U0(`x′). Then

U(u, z) =
ejk∆z

j2π
cotα exp

(
j

2

cotα

cos2 α
‖x‖2

)∫∫
Σ
Ũ0(x′, z) exp

(
−jx · x′

sinα
+
j

2
cotα‖x′‖2

)
dx′.

(28)
Given the trigonometric identity

cotα

cos2 α
=

1

sinα cosα
=

sin2 α+ cos2 α

sinα cosα
= tanα+ cotα,

U(u, z) =
ejk∆z

j2π
cotα exp

(
j

2
(tanα+ cotα)‖x‖2

)
×
∫∫

Σ
Ũ0(x′, z) exp

(
−jx · x′

sinα
+
j

2
cotα‖x′‖2

)
dx′. (29)
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Using the complex conjugate of Eq. 18, F−α{f}(x), then

2π| sinα|
e−j(πα̂−2α)/2

F−α{f}(x) = exp

(
j

2
cotα‖x‖2

)∫∫
exp

(
−jx · x′

sinα
+
j

2
cotα‖x′‖2

)
f(x′) dx′.

(30)
Substituting this result into Eq. 29,

U(u, z) = ejk∆z cotα| sinα|
je−j(πα̂−2α)/2

exp

(
j

2
tanα‖x‖2

)
F−α{Ũ0}(x, z) (31)

=
ej(k∆z−α)

je−jπα̂/2
α̂ cosα exp

(
jk

2∆z
sin2 α‖u‖2

)
F−α{Ũ0}(x, z), (32)

where the fact that α̂ = | sinα|/ sinα and Eq. 27 have both been used in the second line.

When α > 0, α̂ = 1 and je−jπ/2 = 1. Under this condition,

U(u, z) = ej(k∆z−α) cosα exp

(
jk

2∆z
sin2 α‖u‖2

)
F−α{Ũ0}(x, z). (33)

Hence Fresnel propagation over a distance ∆z involves a fractional Fourier transform,
scaled by a few factors. The ejk∆z represents the constant-phase contribution that is often
neglected, the ejα term is the Gouy phase shift (see §8.8.4, p. 498 of [8], or p. 86 of [9]), and
the remaining exponential represents a quadratic approximation to a diverging spherical
wavefront with radius Rα = ∆z/ sin2 α.
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