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1. Introduction

The international astrophysics community, energized by the confirmed discoveries
of more than 1,900 extrasolar planets to date via inferred detection methods [20],
has for the past decade intensified efforts to develop optical instrumentation capable
of characterizing potentially habitable worlds through direct observation. Of these
confirmed discoveries, 30 are rocky terrestrial bodies which orbit within the habitable
zones of their parent stars and thus are capable of exhibiting liquid water [15]. With
state-of-the-art optical instruments capable of directly imaging and spectroscopically
analyzing such terrestrial planets, future missions [21, 22, 23] could yield exciting
scienific data, including atmospheric composition, surface temperature, weather,
and/or land-to-ocean fraction. Presently, however, ground-based observatories have
imaged only 54 exoplanets—most of which are uninhabitable Jovian gas giants—
underscoring the significant degree to which imaging performance from the ground
is limited [20]. Atmospheric turbulence is the primary offender, inducing dynamic
optical variations which are virtually unpredictable.

Whether observing from the ground or with a space-borne telescope, the principal
challenge of exoplanet imaging is attaining the high contrast required to distinguish
a planet from its host star. The task is especially formidable for a terrestrial planet
in the habitable zone, requiring ∼ 10−10 suppression of the parent starlight. As
a comparison, the state-of-the-art Gemini Planet Imager (GPI) instrument, which
commenced science operation at the Gemini South observatory in Chile in 2014, is
capable of ∼10−6 starlight suppression at its inner working angle [13]. GPI achieves
its high-contrast capability with a stellar coronagraph; it employs optical masks
which are optimized to redirect the starlight so as to furnish in the image a dark
region of extremely high contrast (hereafter referred to as the ‘dark hole’ or ‘search
area’).

Though high-performance coronagraphs can theoretically achieve 1010 contrast,
they are extremely susceptible to optical aberrations—spatially-distributed varia-
tions in the wavefront (phase) of the propagating electromagnetic beam which are
the manifestation of the imaging system’s deviation from optimum performance.
These variations may be introduced to the traveling beam as static defects in opti-
cal surfaces owing to imperfect manufacturing or contamination, quasi-static surface
deformation due to thermal expansion, or as index-of-refraction variations (e.g., the
dynamic density fluctuations inherent to atmospheric turbulence). In a coronagraph,
aberrations cause bright speckles to encroach upon the search area and consequently
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reduce the contrast to well below the theoretical diffraction-limited level. Even in
orbit, where atmospheric turbulence is no longer a factor, any small-featured quasi-
static speckles in the image that could obscure or be indistinguishable from a planet
must be suppressed. To mitigate the speckles and recover the high contrast, de-
formable mirrors (DMs) are used to counteract phase aberrations in closed-loop
control.

The limit of achievable contrast in an instrument with closed-loop wavefront cor-
rection is typically determined by the ability of the DM to achieve an arbitrary shape
and the accuracy of the wavefront measurement or state estimation, each of which is
in turn limited by the propagation to the image plane of errors from unmodeled DM
response characteristics [27]. In addition to unmodeled aspects, variations in the
DM response on both observation and commission-life timescales may arise due to
thermal expansion or flexure of the mirror or system architecture, reflective surface
contamination, actuator failure, or gradual degradation of the response over the du-
ration of an instrument’s commission—none of which are issues unique to ground-
or space-based observatories. Regardless of the method of starlight suppression, a
wavefront control system must employ the best possible DM response model and
the instrument must be able to adapt to evolving DM response or actuator fail-
ure. The primary objective of the work presented here is to improve direct-imaging
instrument capability and provide robustness to insufficiencies and/or variations
in the linearized mirror model by updating the model parameters. To this end, I
have implemented a parameter-adaptive extended Kalman filter to perform online
estimation of DM response parameters.

1.1. Report Organization. The remainder of this report is structured as follows:
Section 2 describes the methods by which DMs are employed in closed-loop control
to counter wavefront aberrations, further motivating DM model parameter estima-
tion; a description of the model control system simulated in this work is given in
Section 3, including the dynamics, sensor, and method for contrast determination;
in Section 4, I describe current open-loop methods for modeling DM voltage-to-
deformation response and define the basic DM model and Kalman filter used here
as a baseline to evaluate parameter estimation performance; in Section 5, the basic
DM model is modified to enable parameter estimation and the defining equations
for the adaptive extended Kalman filter are given; the simulation results obtained
using these estimation schemes are also presented, along with discussion of the fac-
tors which limit achievable contrast; Section 6 summarizes the final conclusions and
identifies future extensions of this work.

2. Wavefront Correction Methods

In conventional imaging systems used for ground-based wavefront correction1,
compensation for optical aberrations is achieved by applying a conjugated phase lag

1Although such a system is typically referred to as an ‘adaptive’ optics (AO) system, I have re-
frained from that language here to avoid confusion. Any wavefront control system is adaptive in the
sense that it compensates for dynamic aberrations but, to date, none have control or state estima-
tion algorithms with adjustable parameters or mechanisms for online updates of those parameters.
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to the propagating beam with a deformable mirror. A schematic of such a system
is given in Figure X. A wavefront with dynamic aberrations from the atmosphere
impinges on a deformable mirror; a beamsplitter permits a wavefront sensor to be
located downstream from the DM so that the residual phase error may be mea-
sured, and a control law translates this to command the conjugate wavefront shape
on the DM. Phase conjugation as a method for correcting aberrated starlight in
stellar coronagraphs was first described in 1995 by Malbet, et al., who proposed
the first conceptual high-actuator-density deformable mirror required to implement
the method experimentally and simulated a Levenberg-Marquardt nonlinear least-
squares ‘dark hole algorithm’ to determine the required actuator commands [14].
Early experimental demonstrations of high contrast in coronagraph testbeds em-
ployed a linearized version called ‘speckle-nulling’ [26, 7].

An alternative approach to wavefront correction which requires fewer iterations
than speckle-nulling and functions over a band of wavelengths is electric field conju-
gation, a root-finding routine which seeks the DM actuator commands which make
the electric field in the image identically zero. The method requires estimation of
the complex-valued electric field in the image from measurements of the real-valued
intensity. For this reason, although its underpinning theory is simple, in practice
electric field conjugation relies heavily on accurate prediction of the electric field
in the image plane due to DM actuation [6, 8]. Another technique which relies on
image-plane electric field estimates, termed stroke minimization, optimizes the ac-
tuator commands—and hence the applied stroke—subject to a contrast constraint.
Limitations of this technique include stray incoherent light in the search area of
the image that is uncorrectable by the DM and, more pertinently, systematic elec-
tric field estimation error due to imperfect knowledge of the DM voltage-to-shape
relationship [19].

3. Simulation of an Optical System with Wavefront Control

The model imaging system used in this paper for evaluation of the adaptive
extended Kalman filter simulates a ground-based coronagraphic instrument, and
is illustrated schematically in Figure 1. The controller is essentially a regulator,
designed to maintain a flat, aberration-free wavefront. As this work is intended to
be a proof of principle for adaptive DM parameter estimation, for simplicity the
controller performs conventional phase conjugation, with residual phase error as the
dynamic state x (this avoids the more complicated electric field estimation problem).
Nevertheless, as described in the foregoing paragraphs, systems which utilize other
methods of wavefront correction will benefit from a successful implementation of a
DM model with adaptive parameters. The input is a dynamic wavefront, aberrated
by the turbulent atmosphere. The residual phase error is measured by a wavefront
sensor which, aside from additive Gaussian white noise, is assumed to have perfect
knowledge of the state. Finally, a Kalman filter computes a state estimate x̂ which
optimizes (minimizes) the spread of the estimate-error probability density.

The discrete-time dynamic equation for this system is

xk = Φk−1xk−1 + Γk−1uk−1 + Λk−1wk−1, (1)
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Figure 1. Simulated ground-based wavefront control system. The esti-
mation algorithm is adaptive; it has a mechanism (dashed line) to adjust
the DM model for robustness to unpredictable variations in high-contrast
imaging performance due to DM model error, or response evolution.

where u is the DM control signal and w is the system process noise. The state-
transition matrix Φ represents the dynamics of the phase error due to turbulence
or mechanical vibrations of the optics, but since it is not conceivable to capture
these dynamics in the state transition matrix of an LTI system, Φ will be taken
to be the identity matrix here. Turbulence-induced aberrations are modeled as an
additive dynamic disturbance, described in the following section. The process noise
w is zero-mean Gaussian white noise, originating primarily from the uncertainty in
height for each DM actuator.

A measurement z of the state x is made such that

zk = Hkxk + nk, (2)

where in all cases the observation matrix is an identity matrix, Hk = I and n is
zero-mean Gaussian white noise.

3.1. Generation of a Kolomogorov Phase Screen. In lieu of real data, ade-
quate simulation of the randomly distorted transmission of a wavefront through the
any heterogeneous medium—in this case, the turbulent atmosphere—may be ac-
complished by applying a scalar phase screen. Although turbulence would typically
affect both phase and amplitude of the incident wavefront, necessitating a complex-
valued phase screen to model errors in each, a real-valued screen is used here since
only the phase, not the complete electric field, is considered in this model.

The standard assumption made when modeling atmospheric turbulence follows
Kolmogorov’s hypothesis that for sufficiently high Reynolds numbers, as kinetic en-
ergy is dissipated from large length scales to progressively smaller length scales,
there is a wide range of these length scales over which the turbulent structure is
isotropic and self-similar. The Wiener spectrum of phase fluctuations due to Kol-
mogorov turbulence is a convenient mathematical description of this phenomenon,
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and is defined in terms of the Fried coherence length r0 as

Φ(fs) ≈
0.0229

r
5/3
0

|fs|−11/3, (3)

where fs is the spatial frequency [5, 18]. A Kolmogorov phase screen is generated as a
convolution—the inverse fast Fourier transform (FFT) of the product of the Wiener
spectrum with a field of normally-distributed random complex numbers. This es-
sentially serves to randomly select and scale components of the Wiener spectrum in
the Fourier domain.

Although the Wiener spectrum is unbounded at the origin, the phase difference
between any two points across an aperture is bounded [12]; to resolve this computa-
tionally, the pixel at the origin of the spectrum is set to zero. The lowest frequencies
in the spectrum result in tip-tilt phase errors in an image; the FFT method utilized
here is insufficient in that its sampling of the spectrum at low spatial frequencies
is too coarse and that the lowest frequency components are neglected by zeroing
the origin. Traditional wavefront correction systems do not rely on the deformable
mirror for tip-tilt correction, but provide this mode of actuation with a specifically-
designed flat tip-tilt mirors. Sufficient structure exists in this model at the same
low-to-middle spatial frequencies correctable by DMs with typical actuator counts
for it to be more than adequate for this investigation.

To simulate a typical dynamic input, an initial (dimensionless) Kolmogorov phase
screen with magnitude not exceeding ±0.1 is created. On subsequent iterations, a
new Kolmogorov screen is calculated with 5% of this magnitude and added to the
total accumulation of turbulent phase input.

3.2. Coronagraph Contrast Determination. Contrast, not residual phase er-
ror, is the ultimate metric for coronagraph performance, and it is measured in the
image obtained by the system camera, which is formed on the detector at the focal
plane of the camera lens. To generate a simulated image, the optical wave with its
residual aberrations must be propagated to this focal plane. In the basic system
model described above, all of the control loop operations—dynamic input, measure-
ment, and state estimation—are assumed to be occuring in the entrance aperture (or
pupil) of the imaging system, immediately prior to the focusing lens. The applica-
tion of the coronagraphic mask must also occur at this pupil plane. The relationship
between the electric field in the pupil and the electric field in the image is exactly
a Fourier transform; therefore the complex-valued electric field must be calculated
using the phase at the pupil prior to propagation. The image is the real-valued
intensity (square of the complex modulus) of the image-plane electric field.

Although there are several forms of stellar coronagraph, the specific choice does
not affect the performance of the parameter estimation presented here—in fact for
this model, implementation of a coronagraphic mask is only necesary to track con-
trast at each control iteration. The form of coronagraph utilized in this work is
a shaped-pupil coronagraph [11, 4, 10], which has a simple binary mask with an
aperture that either totally transmits or completely blocks incident light and is op-
timally shaped to nominally achieve 10−10 starlight suppression in the absence of



6 AARON JAMES LEMMER

wavefront error. The mask and the image formed by the coronagraph without any
wavefront error are shown in Figure 2(a) and 2(b).
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Figure 2. The specific shaped pupil mask used in this work (a), the re-
sulting image of a star (b), and the region in which contrast is calculated
(c) are shown. To approximate the fine features of a binary mask in a dis-
cretized simulation, a range of transmission values are used. The image is
displayed on a logarithmic scale, showing contrast scales between 10−3 and
10−7. Contrast is computed over the region of image (b) defined by the
yellow area in (c).

Contrast is measured in the planet search area, or dark hole, a predetermined
region of the image where the theoretically achievable starlight suppression by the
coronagraph is 10−10. Here that region, indicated in Figure 2(c), is taken to be
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azimuthally within ±50◦ and radially between 8 − 20λf/D for the specific ripple-
shaped coronagraphic mask used, where λ is the wavelength of light, f is the focal
length of the imaging lens, and D is the dimension of the pupil. Assuming the image
intensity is normalized by the peak intensity of the starlight, contrast is calculated
as the average intensity value in the search region.

4. Deformable Mirror Modeling and Kalman Filter

Deformable mirror architectures vary in size, structure, and method of actua-
tion, but the models used in wavefront control systems generally are open-loop
[28, 17, 16, 25] and, especially in the field of high-contrast imaging [6, 19], assume
the following: the deflection response for a single actuator is linear in the regime of
applied command signals, the aggregate deflection response due to multiple actua-
tors obeys superposition, and the inter-actuator coupling in the response of neigh-
boring actuators is negligible. The validity of each of these assumptions depends
upon the particular DM architecture.

In general, the essential elements of a DM are its reflective facesheet (which
may be continuous or segmented) and its array of actuators, which operates from
beneath. Actuation methods are typically electrical in nature, with capacitive and
electrostrictive being most common. For brevity and relevance to the laboratory
at Princeton, this paper focus on the capacitive MEMS type [2, 3, 1], which has a
response that is nonlinear in voltage. The simplest method for modeling the response
of this type of mirror, especially in the context of stroke minimization routines for
high-contrast imaging utilizes a linear combination of Gaussian influence functions
which have a nominal maximum value of unity, defined as

g(x, y;σ2) = e−
1

2σ2
[(x−x0)2+(y−y0)2], (4)

where σ2 is uniform for all actuators and is defined to be on the order of the actuator
spacing.

The influence functions of an actual MEMS DM actuation-to-shape response ex-
hibit variability from one actuator to the next. Residual stresses in the reflective
facesheet at the locations of the actuator posts result in a nominal unactuated sur-
face that is not flat, and these same stresses affect the influence functions as well.
Accurate modeling of a real MEMS DM can be achieved by forming a look-up table
from careful interferometric measurements of each influence function over a range
of operating voltages; however, for a 1,000-actuator MEMS DM this is extremely
time-consuming, and furthermore, such measurements are subject to error from in-
terpolation and are not robust to any time-evolution of the DM response caused by
any of the reasons described above.

The true response of a DM has been simulated by modifying the previously-
desrcibed model with identical influence functions for each actuator, allowing ran-
dom normally-distributed constant variations in the nominal FWHM. The model
used for state estimation assumes näıvety—i.e., detailed characterization of the DM
surface response has not been performed—so that each influence function is taken
to have an identical FWHM.
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4.1. Implementation of DM Model in a Kalman Filter. Following the nota-
tion of Stengel [24], and substituting Φ = I and H = I, the Kalman filter can be
constructed with the following equations:

x̂k(−) = x̂k−1(+) + Γk−1uk−1 (5a)

Pk(−) = Pk−1(+) + Λk−1Qk−1Λ
T
k−1 (5b)

Kk = Pk(−)[Pk(−) + Rk]−1 (5c)

x̂k(+) = x̂k(−) + Kk[zk − x̂k(−)] (5d)

Pk(+) = (I−Kk)Pk(−). (5e)

Equation 5a extrapolates the expected value of the state estimate, and since w
is assumed to be a zero-mean disturbance, this term is neglected here. The state
is a square two-dimensional array in physical space, but can be reshaped into a
vector with dimension

[
N2

xy × 1
]
, where Nxy is the number of pixels in each spatial

dimension. The DM is a square array of N2
act actuators, so the control vector

u has dimension
[
N2

act × 1
]
. The matrix Γ represents the DM influence function

model, but is carefully written to express the mapping between each of the actuator
commands and the vector form of the state. As such, the dimensions of Γ are[
N2

xy ×N2
act

]
, and Γ may be written in terms of the influence functions:

Γ =




...
g1
...




...
g2
...

 . . .


...

g̃N2
act
...


 . (6)

The covariance estimate is extrapolated according to Equation 5b. Following [9],
Λ is taken to be Γ, which assumes that any disturbance is addtive and due entirely
to imprecision σ2u in the DM actuation. As a result, since Q′k = E

(
wkw

T
k

)
, then

Qk = ΛkQkΛ
T
k = σ2uΓkΓ

T
k , (7)

where here I have chosen σu = 1.5% (relative to unit control input). In the filter
gain computation step (5c), Rk = E

(
nkn

T
k

)
is determined by the known Gaussian

measurement noise applied in the simulation of the measurement (2) obtained by
the wavefront sensor; here the uncertainty is chosen to be 0.005. The state estimate
is updated with a measurement according to (5d); to avoid inverting ill-conditioned
matrices, the Joseph form (5e) of the covariance estimate update is utilized.

5. Adaptive Extended Kalman Filter

A robust wavefront control system should be capable of adapting to imperfect
knowledge or evolution of the DM response. Since the model here used by the
Kalman filter is imperfect, the state estimation is suboptimal because the model
error is not minimal. An adaptive extended Kalman filter has been implemented
to address this problem. By linearizing each influence function about a nominal
width, with the perturbing deviation in the width becomes a parameter that may
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be estimated simultaneously with the state. This estimate is then used to make
online adjustments to the DM model and the filter gains.

5.1. Formulation of the Estimator Equations. Let the Gaussian influence func-
tion be expanded in a Taylor series,

g(x, y;σ2) = g(x, y;σ20) + g′(x, y;σ20)(σ2 − σ20) + · · · (8a)

≈ g(x, y;σ20) +
1

2σ40
g(x, y;σ20)

[
(x− x0)2 + (y − y0)2

]
(σ2 − σ20) (8b)

= g(x, y;σ20) + g̃(x, y;σ20)δ(σ2); (8c)

then, Γ may be written as Γ + δΓ so that the state estimate extrapolation of the
Kalman filter becomes

x̂k(−) = x̂k−1(+) + Γk−1uk−1 + δΓk−1uk−1. (9)

Defining the parameter pn , δ(σ2)n as the deviation in the FWHM of the nth

actuator, δΓ can be written as a product of the constant matrix Γ̃ and the diagonal[
N2

act ×N2
act

]
matrix Π of these parameters,

x̂k(−) = x̂k−1(+) + Γk−1uk−1 + Γ̃k−1Πuk−1, (10)

where

Π =


p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 . . . pN2

act

 . (11)

Up to this point, the modications made to the DM model in order to introduce
these parameters have not changed the fact that the system representation is linear.
However, implementation of the parameter-adaptive Kalman filter requires that the

state be augmented with a vector of these parameters, xA =
[
x p

]T
, where p is the

diagonal of Π. This introduces nonlinearity through the products of, in this case,
the elements of p and u, necessitating that the estimation be accomplished with an
extended Kalman filter. The generic discrete extended Kalman filter is given by the
following equations:

x̂k(−) = f [x̂k−1(+),uk−1] (12a)

Pk(−) = Fk−1Pk−1(+)FT
k−1 + Qk−1 (12b)

Kk = Pk(−)HT
k [HkPk(−)HT

k + Rk]−1 (12c)

x̂k(+) = x̂k(−) + Kk{zk − h[x̂k(−)]} (12d)

Pk(+) = (I−KkHk)Pk(−) (12e)

where the Jacobians F and G are defined as

Fk =
∂

∂x
f [x,u]

∣∣∣∣
x̂k(−),uk

and Hk =
∂

∂x
h[x,u]

∣∣∣∣
x̂k(−),uk

. (13)

The state estimate extrapolation utilizes the full nonlinear equation, but the remain-
ing expressions require additional computation of the Jacobians upon each iteration.
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Formulation of the extended Kalman filter with the augmented state is a simple
extension, and for clarity is presented here:[

x̂k(−)
p̂k(−)

]
=

[
f1[x̂k−1(+), p̂k−1(+),uk−1]

f2[p̂k−1(+),uk−1]

]
(14a)

P̃k(−) = F̃k−1P̃k−1(+)F̃T
k−1 + Q̃k−1 (14b)

K̃k = P̃k(−)H̃T
k

[
H̃kP̃k(−)H̃T

k + Rk

]−1
(14c)[

x̂k(+)
p̂k(+)

]
=

[
x̂k(−)
p̂k(−)

]
+ K̃k

{
zk − H̃k

[
x̂k(−)
p̂k(−)

]}
(14d)

P̃k(+) = (I− K̃kH̃k)P̃k(−) (14e)

where the Jacobians are defined as

F̃k =

[
∂f1/∂x ∂f1/∂p
∂f2/∂x ∂f2/∂p

]∣∣∣∣
x̂k(−), p̂k(−),uk

and (15)

H̃k =
[
∂h/∂x ∂h/∂p

]∣∣
x̂k(−), p̂k(−)

(16)

and where

f1[xk,pk,uk] = Φk[pk]xk + Γk[pk]uk + Γ̃k[pk]Πkuk and (17)

f2[pk] = pk. (18)

The above linearization assumes that p is an unknown random constant, so the
appropriate model f2 for the dynamics of these parameters is the discrete equivalent
of ṗ = 0.

Applying these equations to the problem at hand, the extrapolation of the state
estimate may be written[

x̂k(−)
p̂k(−)

]
=

[
x̂k−1(+)
p̂k−1(+)

]
+

[
Γk−1 + Γ̃k−1Π

0

]
uk−1, (19)

where the state has dimension
[(
N2

xy +N2
act

)
× 1
]
. The elements of the Jacobian F̃,

which is a square matrix with N2
xy +N2

act rows, are:

∂f1
∂x

= IN2
xy×N2

xy
(20)

∂f1
∂p

= Γ̃u (21)

∂f2
∂x

= 0 (22)

∂f2
∂p

= IN2
act×N2

act
(23)

Variation in h with the parameters p may be neglected [24], and the Jacobian for
h simplifies for this problem due to the simplicity of the measurement model:

H̃ =
[
IN2

act×N2
act

0
]
. (24)
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5.2. Simulation Results and Discussion. Demonstration of the performance of
the adaptive extended Kalman filter is given in Figures 3 and 4.
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Figure 3. Adaptive Kalman filter results after ten iterations. The input
Kolmogorov phase (a), the applied DM shape (b), and the corresponding
actuator commands (c) are shown in the first row. The state (d), final state
estimate (e), and state residual (f) follow in the second row. The imperfect
true DM shape that results after all influence functions are given equal unit
weight (g), the final parameter estimates (h), and the image (i) with final
contrast of ∼10−5.8 compose the third row.
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The final state, x, exhibits errors with spatial frequencies on the order of the
actuator spacing; this is not a surprising result, as the phase conjugation method
is fundamentally limited in the spatial frequencies of aberration that it can correct
by the Nyquist limit corresponding to the actuator spacing. The simulation was
formatted in a way that the Kolmogorov input and true DM shapes would be truly
random for each execution of ten iterations; performance varied little (qualitatively)
from what is demonstrated here. There is little qualitative evidence that the adap-
tive extended Kalman filter performs significantly better than the standard Kalman
filter implemented without parameter estimation; upon tuning the magnitude of
the FWHM variations in the true DM influence functions, when the variation is
increased beyond a certain threshold so that convergence is not achieved, both al-
gorithms diverge similarly. The adaptive filter also appears to converge in a more
smooth fashion, but not significantly so. Although one could be convinced upon
comparison of Figures 3(g) and 3(h) that the adaptive filter is attempting to con-
form to at least the largest of the DM shape variations, there is not good agreement
between the estimated parameters and the true parameters.
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Figure 4. Comparison of typical achieved contrast between standard
Kalman filter with unadjustable DM model and parameter-adaptive ex-
tended Kalman filter.

Several explanations for this lack of agreement can be made. The observability
of the FWHM of the Gaussian influence functions in the residual phase error was
not calculated/tested; the control effect of the width of the influence function—
as opposed to its gain—needs to be examined. Furthermore, the nature of the
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dynamics could be chosen so as to elucidate better whether the parameter estimation
is tracking the true value; one method would be to create a true DM model with
parameters varying sinusoidally in magnitude, and examine the time evolution of the
parameter estimates for corresponding sinusoidal behavior. Perhaps a more accesible
parameter would involve an estimation of the bias or nonlinearity of a MEMS DM
response with the control input. Improvements of this nature are currently being
made which also implement an model of a MEMS DM rather than the influence
functions chosen here [28].

6. Conclusions and Final Remarks

An parameter-adaptive Kalman filter has been applied, in simulation, to the
problem of wavefront control for high-contrast imaging. A DM model based on
Gaussian influence functions was linearized with respect to the width of the Gaussian
functions, and these widths were taken to be the model parameters adjustable by
the adaptive filter. Application of both a standard estimator as well as an adaptive
estimator to a ground-based wavefront control system with Kolmogorov turbulence
input and a phase conjugation control scheme was simulated in closed loop; the goal
of each routine was to drive the residual phase error to zero so as to create an image
with high contrast. The residual error and image contrast were used as metrics
to compare the two estimators, which ran for ten iterations of the control loop.
The two estimators were shown to perform similarly, but this does not necessarily
indicate the failure or infeasibility of parameter-adaptive estimation. Choosing the
widths of the influence function as the adjustable parameters may not have been
the best choice for the filter, as it is not clear whether variations in these parameters
are observable in the phase error.
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stein, and D. A. Castañon. Continuous-membrane surface-micromachined silicon deformable
mirror. Opt. Eng., 36(5):1354–1360, 1997.

[3] T. G. Bifano, J. Perreault, R. Krishnamoorthy Mali, and M. N. Horenstein. Microelectrome-
chanical deformable mirrors. IEEE J. Sel. Top. Quantum Electron., 5(1):83–89, 1999.

[4] A. Carlotti, R. Vanderbei, and N. J. Kasdin. Optimal pupil apodizations for arbitrary aper-
tures. Opt. Express, 19(27):26796–26809, 2011.

[5] D. L. Fried. Statistics of a Geometric Representation of Wavefront Distortion. J. Opt. Soc.
Am., 55(11):1427–1435, 1965.

[6] A. Give’on, R. Belikov, S. Shaklan, and N. J. Kasdin. Closed loop, DM diversity-based,
wavefront correction algorithm for high-contrast imaging systems. Opt. Express, 15(19):12338–
12343, 2007.

[7] A. Give’on, N. J. Kasdin, R. J. Vanderbei, and Y. Avitzour. On representing and correcting
wavefront errors in high-contrast imaging systems. J. Opt. Soc. Am. A, 23, 2006.

[8] A. Give’on, B. Kern, S. Shaklan, D. C. Moody, and L. Pueyo. Broadband wavefront correction
algorithm for high-contrast imaging systems. Proc. SPIE, 6691:66910A–1–66910A–11, 2007.

[9] T. D. Groff. Optimal Electric Field Estimation and Control for Coronagraphy. PhD thesis,
Princeton University, 2012.



14 AARON JAMES LEMMER

[10] N. J. Kasdin, A. Carlotti, L. Pueyo, T. Groff, and R. Vanderbei. Unified coronagraph and
wavefront control design. Proc. SPIE, 8151:81510Y–81510Y–10, 2011.

[11] N. J. Kasdin, R. J. Vanderbei, D. N. Spergel, and M. G. Littman. Extrasolar Planet Finding
via Optimal ApodizedPupil and ShapedPupil Coronagraphs. Astrophys. J., 582(2):1147–1161,
2003.

[12] R. G. Lane, A. Glindemann, and J. C. Dainty. Simulation of a Kolmogorov phase screen.
Waves in Random Media, 2(1992):209–224, 1992.

[13] B. Macintosh, J. R. Graham, P. Ingraham, Q. Konopacky, C. Marois, M. Perrin, L. Poyneer,
B. Bauman, A. Burrows, A. Cardwell, J. Chilcote, R. J. De Rosa, D. Dillon, R. Doyon,
J. Dunn, D. Erikson, M. Fitzgerald, D. Gavel, S. Goodsell, M. Hartung, P. Hibon, P. G. Kalas,
J. Larkin, J. Maire, F. Marchis, M. Marley, J. McBride, M. Millar-Blanchaer, K. Morzinski,
A. Norton, B. R. Oppenheimer, D. Palmer, J. Patience, L. Pueyo, F. Rantakyro, N. Sadakuni,
L. Saddlemyer, D. Savransky, A. Serio, R. Soummer, A. Sivaramakrishnan, I. Song, S. Thomas,
J. K. Wallace, S. Wiktorowicz, and S. Wolff. The Gemini Planet Imager: First Light. Proc.
Natl. Acad. Sci. U. S. A., 2014.

[14] F. Malbet, J. W. Yu, and M. Shao. High Dynamic Range Imaging Using a Deformable Mirror
for Space Coronography. Publ. Astron. Soc. Pacific, 107(710):386–398, 1995.

[15] A. Méndez. Planetary Habitability Laboratory, 2015.
[16] K. M. Morzinski, D. T. Gavel, A. P. Norton, D. R. Dillon, and M. R. Reinig. Characterizing

MEMS deformable mirrors for open-loop operation: high-resolution measurements of thin-plate
behavior. Proc. SPIE, 6888:68880S–68880S–12, 2008.

[17] K. M. Morzinski, K. B. W. Harpsø e, D. T. Gavel, and S. M. Ammons. The open-loop control
of MEMS: modeling and experimental results. Proc. SPIE, 6467:64670G–64670G–10, 2007.

[18] R. J. Noll. Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am., 66(3):207–211,
1976.

[19] L. Pueyo, J. Kay, N. J. Kasdin, T. Groff, M. McElwain, A. Give’on, and R. Belikov. Optimal
dark hole generation via two deformable mirrors with stroke minimization. Appl. Opt., 48:6296–
6312, 2009.

[20] F. Roques and J. Schneider. The Extrasolar Planets Encyclopaedia, 2015.
[21] S. Seager, M. Turnbull, W. Sparks, S. Shaklan, M. Thomson, N. Kasdin, S. Goldman, M. Kuch-

ner, A. Roberge, and W. Cash. Exo-S : Starshade Probe-Class Exoplanet Direct Imaging Mis-
sion Concept. Technical report, NASA JPL, 2014.

[22] D. Spergel, N. Gehrels, J. Breckinridge, M. Donahue, A. Dressler, B. Gaudi, T. Greene,
O. Guyon, C. Hirata, J. Kalirai, N. Kasdin, W. Moos, S. Perlmutter, M. Postman, B. Rauscher,
J. Rhodes, Y. Wang, D. Weinberg, J. Centrella, and W. Traub. Wide-Field InfraRed Survey
Telescope - Astrophysics Focused Telescope Assets WFIRST-AFTA. Technical report, NASA
GSFC, 2013.

[23] K. Stapelfeldt, R. Belikov, G. Bryden, K. Cahoy, S. Chakrabarti, M. Marley, M. McElwain,
V. Meadows, E. Serabyn, and J. Trauger. Exo-C Imaging Nearby Worlds. Technical report,
NASA JPL, 2014.

[24] R. F. Stengel. Optimal Control and Estimation. Dover Publications, Inc., New York, 1994.
[25] J. B. Stewart, A. Diouf, Y. Zhou, and T. G. Bifano. Open-loop control of a MEMS deformable

mirror for large-amplitude wavefront control. J. Opt. Soc. Am. A, 24(12):3827–3833, 2007.
[26] J. Trauger, C. Burrows, and B. Gordon. Coronagraph contrast demonstration with the high

contrast imaging testbed. Proc. SPIE, 5487:1330–1336, 2004.
[27] R. Tyson. Principles of Adaptive Optics. CRC Press, Boca Raton, FL, 3rd edition, 2011.
[28] C. R. Vogel and Q. Yang. Modeling, simulation, and open-loop control of a continuous facesheet

MEMS deformable mirror. J. Opt. Soc. Am. A. Opt. Image Sci. Vis., 23(5):1074–1081, 2006.


